

For in vitro diagnostic use

(E IVD

BCR-ABL1 t (9; 22) ONE-STEP RT-PCR QUANTITATIVE DETECTION p210 (M-BCR)

ORDERING INFORMATIONS

REF: ONC-015-25 CND Code: W01060208- T(9;22) RDM Code: 2259479/R Tests: 25

Reactions: 50

Manufacturer: BioMol Laboratories s.r.l.

CONTENTS OF THE KIT

The kit consists of reagents for reverse transcription and PCR amplification.
*the reagents for total RNA extraction are not supplied in the kit

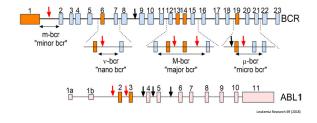
PRODUCT CHARACTERISTICS

Device belonging to the family of in vitro medical devices **REAL-TIME QUANTITATIVE PCR-SOMATIC MUTATIONS**. Quantitative detection of the t(9;22) BCR-ABL1 breakpoint M-bcr translocation (p210, b3a2 and b2a2 transcripts) by RT-PCR (Reverse transcriptase-polymerase chain reaction) technique and subsequent detection in PCR-Real-time with **standard curve calibrated on ERM-AD623** curve (plasmid reference material produced and certified in accordance with European Reference Materials guidelines) and BCR-ABL1 M-bcr reference RNA.

The device was developed in accordance with **the Europe Against Cancer (EAC) guidelines** and optimized for Biorad CFX96 Dx, Biorad Opus Dx and Agilent AriaDx Real-Time PCR instruments.

SCIENTIFIC BACKGROUND

Myeloproliferative neoplasms (MPNs) are hematologic malignancies characterized by the proliferation of one or more myeloid lineages: granulocytic, erythroid, megakaryocytic, and/or mast cell. According to the 2016 World Health Organization criteria, the MPN classification includes seven subcategories: chronic myeloid leukemia (CML), chronic neutrophilic leukemia, polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET), eosinophilic leukemia chronic - not otherwise specified and MPN, unclassifiable (MPN-U).


The Philadelphia chromosome (Ph) derived from the translocation between chromosomes 9 and 22 with subsequent BCR-ABL1 fusion, is present in about 95% of cases of chronic myeloid leukemia (CML), in 25-30% of cases of acute lymphoblastic leukemia (ALL) of adults and in 2-4% of ALL of children.

- § Am J Hematol. 2024 Aug 2.doi: 10.1002/ajh.27443. Online ahead of print. Chronic myeloid leukemia: 2025 update on diagnosis, therapy, and monitoring
- § The 2016 revision to the World Health Organization classification of myeloic neoplasms and acute leukemia. Blood. 2016 May 19; 127(20): 2391-405. Epub 2016 Apr 11
- § Leukemia. 2015 May;29(5):999-1003. doi: 10.1038/leu.2015.29. Epub 2015 Feb 5. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia
- § Guidelines for the measurement of BCR-ABL1 transcripts in chronic myeloid leukaemia. Br J Haematol. 2011 Apr; 153(2):179-90. doi: 10.1111/j.1365-2141.2011.08603.x. Epub 2011 Mar B.
- § J. Clin. Oncol. 2009 Dec 10:27/35):6041-51. doi: 10.1200/ICO.2009.25.0779. Epub 2009 Nov 2. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet
- § Leukemia. 2009 Nov;23(11):1957-63. doi: 10.1038/leu.2009.168. Epub 2009 Aug 27. Harmonization of molecular monitoring of CML therapy in Europe
- § European LeukemiaNet (2009). Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. Journal of Clinical Oncology 27 6041–6051.
- § Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008 Jan; 22(1):14-22. Epub 2007 Sep 20. Review.
- § Leukemia. 2003 Dec;17(12):2318-57. doi: 10.1038/sj.leu.2403135. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia a Europe Against Cancer program.

CLINICAL SIGNIFICANCE

BCR-ABL1 rearrangement results in the generation of fusion proteins with constitutive tyrosine kinase activity. Based on the specific breakpoints of the rearrangement, different isoforms of the BCR-ABL1 fusion protein are generated, which correlate with different leukemic phenotypes. Three breakpoint regions in the BCR gene have been described: major (M-BCR), minor (m-BCR), and micro (μ -BCR). More than 95% of Ph+ CML patients have the rearrangement in the M-BCR region (p210 BCR-ABL1), with the el3a2 and el4a2 transcripts most represented. The breakpoint in the m-BCR region generates the pl90 BCR-ABL1 protein with the ela2 transcript mostly represented. The breakpoint in the m-BCR region generates the p190 BCR-ABL1 protein with the ela2 transcript mostly represented.

The breakpoint in the m-BCR region generates the p190 BCR-ABL1 protein with the e1a2 transcript most represented. Furthermore, a third BCR-ABL1 protein, p230BCR-ABL1, can be observed.

For in vitro diagnostic use

BCR-ABL1 t (9; 22) ONE-STEP RT-PCR QUANTITATIVE DETECTION p210 (M-BCR)

ORDERING INFORMATIONS

REF: ONC-015-25 CND Code: W01060208- T(9;22) RDM Code: 2259479/R Tests: 25 Reactions: 50

Manufacturer: BioMol Laboratories s.r.l.

CONTENTS OF THE KIT

The kit consists of reagents for reverse transcription and PCR amplification. *the reagents for total RNA extraction are not supplied in the kit

CONTENTS OF THE KIT

DESCRIPTION	LABEL	VOLUME	STORAGE
		ONC-015-25	
Mix oligonucleotides and probes	Mix PCR p210 BCR-ABL1 4X	1 x 250 µl	- 20 °C
Mix buffer and RT/Taq Polym. enzyme	Mix RT-PCR 4X	1 x 250 µl	- 20 °C
Deionized H ₂ 0	Deionized H₂0	1 x 1 ml	- 20 °C
Recombinant DNA/RNA	CAL 1 p210/abl – 1,08 x10 ⁶ copies	1 x 30 µl	- 20 °C
Recombinant DNA/RNA	CAL 2 p210/abl -1,08 x10 ⁵ copies	1 x 30 µl	- 20 °C
Recombinant DNA/RNA	CAL 3 p210/abl -1,08 x10 ⁴ copies	1 x 30 µl	- 20 °C
Recombinant DNA/RNA	CAL 4 p210/abl - 1,08 x10 ³ copies	1 x 30 µl	- 20 °C
Recombinant DNA/RNA	CAL 5 p210/abl - 1,08 x10 ² copies	1 x 30 µl	- 20 °C
Recombinant DNA/RNA	CAL 6 p210/abl - 10,8 copies	1 x 30 µl	- 20 °C
Recombinant RNA	Positive control p210/abl	1 x 30 µl	- 20 °C
Recombinant RNA	Negative control	1 x 30 µl	- 20 °C
Reference RNA (IS conversion)	Reference M-bcr p210/abl	2 x 20 µl	- 20 °C -80°C if > 1 month

TECHNICAL CHARACTERISTICS

COD ONC-015-25

COD. ONC-015-25			
STABILITY	18 months		
REAGENTS STATUS	Ready to use		
BIOLOGICAL MATRIX	Total RNA extracted from white blood cells from whole blood or bone marrow aspirate		
POSITIVE CONTROLS, NEGATIVE CONTROLS AND REFERENCE	ONC-015-25: RNA for at least 3 analytical sessions Reference RNA, calibrated in accordance with WHO Primary Reference Panel NIBSC 09/138.		
STANDARD CURVE	Recombinant DNA/RNA p210, 6 standard points with concentration from 1,08 x10 ⁶ to 10,8 copies (calibrated with ERM-AD623 standard curve, produced and certified in accordance with European Reference Materials guidelines)		
TECHNOLOGY	RT-PCR ONE-STEP in Real-time; oligonucleotides and specific probes; 2 FAM and HEX fluorescence channels		
VALIDATED INSTRUMENTS	Biorad CFX96 Dx, Biorad Opus Dx and Agilent AriaDx		
RUNNING TIME	110 min		
THERMAL CYCLING PROFILE	1 cycle at 25° C (2 min); 1 cycle at 50 °C (25 min); 1 cycle at 95 °C (2 min); 50 cycles at 95 °C (5 sec) + 60 °C (45 sec). Reading at 60 °C		
ANALYTICAL SPECIFICITY	Absence of non-specific pairings of oligonucleotides and probes; absence of cross-reactivity		
LIMIT OF DETECTION (LOD)	≥ 10,8 copies; ≥ 0,0032%		
LIMIT OF BLANK (LOB)	0% NCN		
REPRODUCIBILITY	99,9%		
DIAGNOSTIC SPECIFICITY / DIAGNOSTIC SENSITIVITY	100%/98%		

